Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Materials (Basel) ; 16(14)2023 Jul 09.
Article En | MEDLINE | ID: mdl-37512177

The growing demand for Magnesium in the automotive and aviation industries has enticed the need to improve its corrosive properties. In this study, the WE43 magnesium alloys were friction stir welded (FSW) by varying the traverse speed. FSW eliminates defects such as liquefication cracking, expulsion, and voids in joints encountered frequently in fusion welding of magnesium alloys. The microstructural properties were scrutinized using light microscopy (LM) and scanning electron microscopy (SEM). Additionally, the elemental makeup of precipitates was studied using electron dispersive X-ray spectroscopy (EDS). The electrochemical behavior of specimens was evaluated by employing potentiodynamic polarization tests and was correlated with the microstructural properties. A defect-free weldment was obtained at a traverse and rotational speed of 100 mm/min and 710 rpm, respectively. All weldments significantly improved corrosion resistance compared to the base alloy. Moreover, a highly refined microstructure with redistribution/dissolution of precipitates was obtained. The grain size was reduced from 256 µm to around 13 µm. The corrosion resistance of the welded sample was enhanced by 22 times as compared to the base alloy. Hence, the reduction in grain size and the dissolution/distribution of secondary-phase particles within the Mg matrix are the primary factors for the enhancement of anti-corrosion properties.

2.
Micromachines (Basel) ; 13(10)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36296130

Additive manufacturing (AM) is a technique that progressively deposits material in layer-by-layer manner (or in additive fashion) for producing a three-dimensional (3D) object, starting from the computer-aided design (CAD) model. This approach allows for the printing of complicated shaped objects and is quickly gaining traction in the aerospace, medical implant, jewelry, footwear, automotive, and fashion industries. AM, which was formerly used for single part customization, is currently being considered for mass customization of parts because of its positive impacts. However, part quality and build time are two main impediments to the deployment of AM for mass production. The optimal part orientation is fundamental for maximizing the part's quality as well as being critical for reducing the fabrication time. This research provides a new method for multi-part AM production that improves quality while reducing overall build time. The automatic setup planning or orientation approach described in this paper employs two objective functions: the quality of the build component and the build time. To tackle the given problem, it introduces a three-step genetic algorithm (GA)-based solution. A feature-based technique is utilized to generate a collection of finite alternative orientations for each component within a specific part group to ensure each part's individual build quality. Then, a GA was utilized to find the best combination of part build orientations at a global optimal level to reduce material consumption and build time. A case study of orienting nine components concurrently inside a given building chamber was provided for illustration. The findings suggest that the developed technique can increase quality, reduce support waste, and shorten overall production time. When components are positioned optimally rather than in random orientations, build time and support volume are reduced by approximately 7% and 16%, respectively.

3.
Front Public Health ; 9: 781827, 2021.
Article En | MEDLINE | ID: mdl-34938711

COVID-19 (SARS-CoV-2) was declared as a global pandemic by the World Health Organization (WHO) in February 2020. This led to previously unforeseen measures that aimed to curb its spread, such as the lockdown of cities, districts, and international travel. Various researchers and institutions have focused on multidimensional opportunities and solutions in encountering the COVID-19 pandemic. This study focuses on mental health and sentiment validations caused by the global lockdowns across the countries, resulting in a mental disability among individuals. This paper discusses a technique for identifying the mental state of an individual by sentiment analysis of feelings such as anxiety, depression, and loneliness caused by isolation and pauses to the normal chains of operations in daily life. The research uses a Neural Network (NN) to resolve and extract patterns and validate threshold trained datasets for decision making. This technique was used to validate 2,173 global speech samples, and the resulting accuracy of mental state and sentiments are identified with 93.5% accuracy in classifying the behavioral patterns of patients suffering from COVID-19 and pandemic-influenced depression.


COVID-19 , Pandemics , Attitude , Communicable Disease Control , Depression/diagnosis , Depression/epidemiology , Humans , Neural Networks, Computer , SARS-CoV-2 , Sentiment Analysis , Speech
4.
Sensors (Basel) ; 21(23)2021 Dec 01.
Article En | MEDLINE | ID: mdl-34884026

Intelligent machining has become an important part of manufacturing systems because of the increased demand for productivity. Tool condition monitoring is an integral part of these systems. Airborne acoustic emission from the machining process is a vital indicator of tool health, however, it is highly affected by background noise. Reducing the background noise helps in developing a low-cost system. In this research work, a feedforward neural network is used as an adaptive filter to reduce the background noise. Acoustic signals from four different machines in the background are acquired and are introduced to a machining signal at different speeds and feed-rates at a constant depth of cut. These four machines are a three-axis milling machine, a four-axis mini-milling machine, a variable speed DC motor, and a grinding machine. The backpropagation neural network shows an accuracy of 75.82% in classifying the background noise. To reconstruct the filtered signal, a novel autoregressive moving average (ARMA)-based algorithm is proposed. An average increase of 71.3% in signal-to-noise ratio (SNR) is found before and after signal reconstruction. The proposed technique shows promising results for signal reconstruction for the machining process.


Algorithms , Neural Networks, Computer , Acoustics , Noise , Signal-To-Noise Ratio
5.
Sensors (Basel) ; 21(23)2021 Dec 06.
Article En | MEDLINE | ID: mdl-34884146

One of the major health concerns for human society is skin cancer. When the pigments producing skin color turn carcinogenic, this disease gets contracted. A skin cancer diagnosis is a challenging process for dermatologists as many skin cancer pigments may appear similar in appearance. Hence, early detection of lesions (which form the base of skin cancer) is definitely critical and useful to completely cure the patients suffering from skin cancer. Significant progress has been made in developing automated tools for the diagnosis of skin cancer to assist dermatologists. The worldwide acceptance of artificial intelligence-supported tools has permitted usage of the enormous collection of images of lesions and benevolent sores approved by histopathology. This paper performs a comparative analysis of six different transfer learning nets for multi-class skin cancer classification by taking the HAM10000 dataset. We used replication of images of classes with low frequencies to counter the imbalance in the dataset. The transfer learning nets that were used in the analysis were VGG19, InceptionV3, InceptionResNetV2, ResNet50, Xception, and MobileNet. Results demonstrate that replication is suitable for this task, achieving high classification accuracies and F-measures with lower false negatives. It is inferred that Xception Net outperforms the rest of the transfer learning nets used for the study, with an accuracy of 90.48. It also has the highest recall, precision, and F-Measure values.


Deep Learning , Skin Neoplasms , Artificial Intelligence , Early Detection of Cancer , Humans , Skin , Skin Neoplasms/diagnosis
6.
Sensors (Basel) ; 20(17)2020 Aug 31.
Article En | MEDLINE | ID: mdl-32878294

Clustering in wireless sensor networks plays a vital role in solving energy and scalability issues. Although multiple deployment structures and cluster shapes have been implemented, they sometimes fail to produce the expected outcomes owing to different geographical area shapes. This paper proposes a clustering algorithm with a complex deployment structure called radial-shaped clustering (RSC). The deployment structure is divided into multiple virtual concentric rings, and each ring is further divided into sectors called clusters. The node closest to the midpoint of each sector is selected as the cluster head. Each sector's data are aggregated and forwarded to the sink node through angular inclination routing. We experimented and compared the proposed RSC performance against that of the existing fan-shaped clustering algorithm. Experimental results reveal that RSC outperforms the existing algorithm in scalability and network lifetime for large-scale sensor deployments.

...